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This paper presents methodologies for validating computational models under physical, 
informational and model uncertainties. Integrated computational and test-based methods are 
being investigated at Vanderbilt University, under funding from Sandia National Laboratories, 
NASA, and NSF, to incorporate all three types of uncertainty for design and certification 
analyses of complex engineering systems. The test-only based approach is very expensive and 
does not make use of available analytical models of system behavior, failure modes and 
sensitivities. Inexpensive modeling and simulation-based methods are able to use such 
information. However, with the approximations in the computational models and the limited 
amount of statistical data on the input variables, it is difficult to associate a high degree of 
confidence with prediction based only on computational methods. Therefore, this paper will 
propose a Bayesian methodology to develop validation metrics that integrate uncertainties in 
both computational and empirical methods. The simulation models that we address in this paper 
are primarily finite element-based structural analysis and limit state-based reliability prediction 
models.  

 
Verification and validation under uncertainty involves quantifying the error in the model 
prediction and effectively comparing the prediction with the experimental result when both 
prediction and test data are stochastic. Several deterministic a posteriori error estimates are 
available in the literature for adaptive mesh refinement and model verification in finite element 
analysis. This paper presents a method to estimate the statistical distribution of discretization 
error in the prediction of finite element-based computational models. A collocation-based 
stochastic response surface method (SRSM) is developed for computational efficiency in 
predicting the stochastic distribution of error. Next, a Bayesian methodology is developed for 
model validation. The prior distribution of error in predicting the response is first computed, 
which is then updated based on experimental observation using Bayesian analysis. The prior and 
posterior error distributions are used to compute a validation metric that judges the validity of 
model prediction.  

 
Several components of computational prediction error, such as discretization error, element error, 
and stochastic analysis error are included. Two types of measurement error are included, in the 
context of model validation: error in the measurement of input variables that affects the model 
prediction, and error in the measurement of output variables. This paper also investigates the 
quantification of model form error in computational modeling and simulation under uncertainty 
at various stages. While methods are available to quantify model uncertainty using multiple 
models, this paper discusses the model form error estimation from a single model. The model 
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form uncertainty is treated as a random variable and the statistical distribution of the model form 
error is then obtained by resampling the measured data repeatedly using the smoothed 
bootstrapping technique. Thus model error estimation requires that a sufficient number of test 
results are available to construct the probability density function.  

 
This paper explores the error combination method in model validation, addressing various types 
of uncertainties and errors in both computational predictions and validation experiments. The 
proposed error combination method is based on the construction of a response surface for total 
error or observed error in terms of all the error components which are treated as random 
variables.  Based on a validation metric, error and uncertainty quantification can provide a 
quantitative means for judging whether the model is sufficiently accurate or in need of 
refinement and then permits trade off between computational effort and experimental effort. The 
sensitivity analysis facilitates refinements in data collection for input and output variables, 
mathematical model, numerical model (e.g., FEM mesh), and uncertainty propagation model.   

 
The concept of Bayesian hypothesis testing is extended to system-level problems where full-
scale testing is impossible. Component-level validation results are used to derive a system-level 
validation measure. This derivation depends on the knowledge of inter-relationships between 
component modules. Bayes networks are used for the propagation of validation information from 
the component-level to system-level. Markov Chain Monte Carlo techniques aid in updating the 
statistical distributions of component level response and hence the system level response. The 
computational method is illustrated with a numerical example involving reliability prediction of 
a single degree of freedom turbine engine blade under high-cycle fatigue. The limit state function 
is treated as a system level response while dynamic parameters and mechanical parameters are 
treated as subsystems and components having validation data. 
 
A computational model may generate multiple response quantities at a single location or the 
same response quantity at multiple locations, and a validation experiment might yield 
corresponding measured responses in a single test. In each case, the multiple responses, being 
derived from same input, are correlated and model validation involves comparison of joint 
probability densities of model prediction and test data (multivariate analysis). The Bayesian 
validation metric proposed for comparing a single prediction with a single observation will be 
extended for this purpose. Also, each decision variable can be validated individually or a 
collective metric can be developed to validate the correlated quantities in order to judge the 
overall performance of the code. The proposed concept is applied to a problem involving shock 
physics and wave propagation in two colliding solid aluminum plates. The shock wave velocities 
for different levels of momentum are predicted by an empirical model and validated against 
some observations. 
 
In particular cases, validation of statistical model or distribution may be of concern instead of a 
single prediction values. One has to verify that the available data belongs to distribution 
predicted by the model. In such situations, the first two moments of probability density functions 
of the response obtained from model and data are compared. While classical hypothesis test 
methods fail to reject a wrong model (Type II error), the Bayesian hypothesis testing provides a 
rational validation process. The proposed method is illustrated for a practical problem involving 
mechanical properties of joints found in weapons systems and their structural response under 
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dynamic loading. Quasi-Static mathematical models with uncertain parameters are built to 
explain the dissipative mechanism of lap joints and such empirical models are validated against 
experimental data.  
 
One problem in practical application is to extend what we can learn about the model’s predictive 
capability within the tested region to an inference about the predictive capability in the 
application or untested region. Confidence in the prediction near off-nominal region by a model, 
already validated in the nominal region, needs to be quantified. One approach is to construct a 
regression model for the test data in the validation domain, and to simulate test data in the 
untested region using this model. Inferences may be made in an incremental fashion from 
validation region to untested region, aided by bootstrapping and cross validation. 
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